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Note on Chaos and Diffusion
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Using standard definitions of chaos (as positive Kolmogorov�Sinai entropy)
and diffusion (that multiple time distribution functions are Gaussian), we show
numerically that both chaotic and nonchaotic systems exhibit diffusion, and
hence that there is no direct logical connection between the two properties. This
extends a previous result for two time distribution functions.
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1. INTRODUCTION

It is generally surmised that microscopic chaos is a necessary condition for
diffusive behavior of a system. Microscopic chaos here means a positive
Kolmogorov�Sinai (KS) entropy, or equivalently, at least one positive
Lyapunov exponent. While this seemed to be confirmed by an ingenious
experiment with a Brownian particle, (1) we showed that the same behavior
on which the microscopic chaoticity of the Brownian system was established
also held for a manifestly nonchaotic system with zero KS entropy, (2, 3) so
that both systems exhibited diffusion.2 In these works we used the mean
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2 There are at least two integrable models (hence, with zero Lyapunov exponents) that have

been shown to exhibit diffusion as defined by Eq. (1), a one dimensional hard rod model(4)

and a heavy particle in a lattice of light particles.(5) In both cases there are an infinite
number of moving particles, so we expect that the KS entropy is infinite, as in the infinite
ideal gas.(6) Here we have only one moving particle, and we argued in Ref. [3] that the KS
entropy of our nonchaotic models is zero.



square displacement (Eq. (3) below), a two time distribution function, as
our definition of diffusion.

An anonymous referee of Ref. [3], alerted us to a definition of diffu-
sion (Eq. 1) which involved multitime distribution functions and the ques-
tion arose whether those could distinguish between chaotic and nonchaotic
models, in that all our chaotic models and none of our nonchaotic models
would satisfy this definition. In this note we show that this behavior does
not occur: no difference has been found between the diffusive behavior of
microscopically chaotic and nonchaotic models even in the multitime
distribution functions we studied.

Our models, a subset of those of Ref. [3], consist of a point particle
moving with unit speed in two dimensions, undergoing specular reflections
(collisions) with fixed non-overlapping scatterers. The shapes, positions,
and orientations of the scatterers in the various models are defined in the
next section, and can be classified as Lorentz or (modified) Ehrenfest
models. For each fixed configuration of scatterers, the particle's position x
is determined numerically as a function of the time t for random initial
positions x(0) (which are uniformly distributed over the plane, except that
they cannot lie inside a scatterer) and random initial velocity directions
(also uniformly distributed) of the particle. The probabilities below are
defined with respect to this distribution of initial conditions.

The definition of diffusion proposed by the referee and used in this paper
is stated in terms of the probability of the particle initially at the origin
visiting n regions at n different specified times. Explicitly, a system is said
to be diffusive, if, for all n=1, 2,..., the n+1 time (including t=0) prob-
ability distributions P satisfy the relation [7]:

lim
* � �

P(x(*2t1) # *D1 , x(*2t2) # *D2 ,..., x(*2tn) # *Dn | x(0)=0)

=|
D1

dx1 |
D2

dx2 } } } |
Dn

dxn p(x1 , t1) p(x2&x1 , t2&t1) } } }

p(xn&xn&1 , tn&tn&1) (1)

where 0<t1<t2< } } } <tn are arbitrary times and the Dk (k=1 } } } n) are
arbitrary subsets of the plane. p(x, t) is the Gaussian Green's function of
the (generally anisotropic) diffusion equation in two dimensions,

p(x, t)=
e&u2�4Duut&v2�4Dvvt

? - Duu Dvv t
(2)
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and determines the probability density of a displacement (*u, *v) in time
*2t in the limit * � �. The scaling of the position and time by * is based
on the fact that for Gaussian diffusion the mean square displacement of the
particle is proportional to the time, and is a macroscopic limit. Here, u and
v are distances measured in the eigendirections of the diffusion tensor, while
Duu and Dvv are the corresponding eigenvalues. In the isotropic case
Duu=Dvv=D and the choice of orthogonal directions (u, v) is arbitrary.

The components of the diffusion tensor in an arbitrary orthonormal
basis [ej ] (so that x=�j xjej ) can be related to the mean square displace-
ment (i, j=1, 2):

Dij= lim
t � �

(2xi 2xj)
2t

(3)

where 2x=x(t)&x(0). This expression involves the usual 2-time distribu-
tion function, that is, n=1 in Eq. (1). The mean square displacement is
discussed in ref. 3, where we found numerically that both chaotic and non-
chaotic models exhibited Gaussian diffusion. It is conceivable that a system
may have Gaussian 2-time distribution functions but non-Gaussian multi-
time distribution functions, i.e., for larger values of n. The results of this
note show that also for larger n, both chaotic and nonchaotic models
appear diffusive within the accuracy of the numerical methods.

2. MODELS

The models we consider are the same as some of those discussed
in detail in ref. 3.3 As mentioned above, they all contain a point particle
colliding with fixed non-overlapping scatterers in two dimensions. The
density is such that the scatterers cover exactly half of the available area.

The microscopically chaotic models are Lorentz models, consisting of
circular scatterers distributed in position either periodically or randomly
over the plane, such that they do not overlap. They are microscopically
chaotic as they have a positive KS entropy. See Fig. 1.

591Note on Chaos and Diffusion

3 Specifically: the periodic circles were denoted LP4 in ref. 3, the randomly positioned circles
L�, the periodic squares RP4 and the randomly positioned squares R�. Here, the L stands
for the Lorentz gas, R for the random orientations of the squares, P for periodic, 4 for the
linear dimension of the unit cell (there are also 4 scatterers per unit cell), and � for the
infinite ``unit cell.''
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Fig. 1. The periodic Lorentz model (left) and periodic modified Ehrenfest model (right).

The microscopically nonchaotic models are Ehrenfest-like models,
consisting of square scatterers distributed in position either periodically
or randomly over the plane, such that they do not overlap. They are
microscopically nonchaotic, with zero KS entropy. Unlike the original
Ehrenfest model, the squares in this paper are always oriented at random.
See Fig. 1.

In both the Lorentz and Ehrenfest periodic models, the elementary cell
is square and contains four scatterers. The random models have no
preferred directions, so the diffusion is isotropic. In contrast, the periodic
models have a directionality defined by the elementary cell, and the diffu-
sion is anisotropic as in Eq. (2).

We investigated Eq. (1) for equally spaced times and two choices of
the subsets Dk of the plane:

A The Dk(k�n) are all balls of radius ==1�- 10 centered on the
origin for n=1 } } } 7.

B n=2, where D (i )
1 and D (i )

2 are two balls of radius ==1�- 10
centered on randomly chosen points x (i)

k ; i=1 } } } 7 identifies the different
members of our sample of seven configurations of the D (i )

k , see Table I.
In both cases the scale factor varied as *=1 } } } 100, expanding the

times by *2 and the subsets Dk by * as required by Eq. (1). In case A this
means that as * increases the Dk become larger circles centered on the
origin, while in case B the Dk become larger but also move off to infinity.
The time steps were a single time unit, so that tk=k (k=1 } } } n), and
the maximum length of a trajectory was *2t=70000 for *=100 and n=7.
We took 1000 trajectories of length 106 with different initial conditions.
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Table I. Positions Defining the Centers of the D(i)
k for Case B, and

Corresponding Symbols in Fig. 4 Below

i x(i)
1 y (i)

1 x (i)
2 y (i)

2 Fig. 4 symbol

1 0.41867 &1.48764 &0.02481 &1.57956 plus
2 1.59402 0.87882 1.60281 1.68137 cross
3 &1.08755 1.54166 &1.54202 0.53732 star
4 0.90683 &0.60837 1.05771 1.39554 open square
5 &0.13815 &0.56351 2.23801 &0.43826 filled square
6 2.19919 1.04709 1.55045 0.49136 open circle
7 &0.85062 &0.70816 &2.74100 &2.03641 filled circle

In order to get reasonable statistics without excessive computer time we
considered of order 106 segments of length 7_104 along each trajectory,
shifting the initial state on the trajectory by one time unit. The sample size
was thus of order 109. Because these trajectory segments overlap and hence
are not independent, the statistical error is difficult to estimate a priori; we
find below that it is greatest for the periodic square model, which is not
surprising given that it is expected to have the largest amount of correlation.

In A we are testing for the probability for the particle to return n times
at regular intervals to near its starting point. The motivation is that while
in nonchaotic systems, a trajectory can follow an almost periodic trajectory
for a long time, leading to a power law decay of recurrences, in chaotic
systems the decay of recurrences is exponential. The power law for non-
chaotic systems could lead to correlations over long times, inconsistent
with the uncorrelated diffusion of Eq. (1). The integrand in Eq. (1) is a
product, so the successive time steps are conditionally independent.4

In B we consider alternative choices for the Dk in the (we think)
unlikely event that the rather special case A has different long time
behavior than the general case. Case B does not extract almost periodic
orbits but it may reveal other ways in which correlations might be manifest
at long times.5

593Note on Chaos and Diffusion

4 Case A is similar to the ``almost periodic recurrence'' method of ref. 3, which showed a dif-
ference between chaotic and nonchaotic models by looking at the probability for return to
near the starting point many times at regular intervals. The difference is that in ref. 3 the size
of the regions remained fixed as the time of return increased, while in this paper the Dk and
the times are scaled by factors * and *2, respectively.

5 It would be somewhat impractical to go beyond n=2 in case B: (a) the integral on the RHS
would be of increasingly high dimension and hence hard to evaluate, and (b) the proba-
bilities would be much lower so that the statistics would be very poor, see Fig. 4 below.



Table II. Components of the Diffusion Tensor Computed in Original
Coordinates (x, y) from Eq. (3), and then Diagonalized to Give the (u, v)

Values. Note that the Randomly Placed and Oriented Squares as Well as the
Randomly Placed Circles Are Isotropic, with Dxy=0 and Dxx=Dyy Within

Errors of About 0.001, While the Periodic Models Are Anisotropic and Satisfy
Neither of These Conditions

Model Dxx Dxy=Dyx Dyy Duu Dvv

Random squares 0.1480 &0.0009 0.1480 0.1489 0.1471
Periodic squares 0.2265 0.0383 0.1304 0.2400 0.1170
Random circles 0.2777 0.0005 0.2763 0.2779 0.2761
Periodic circles 0.3087 0.0434 0.2878 0.3429 0.2536

3. RESULTS

We measured the following quantities for the cases A and B discussed
above:

1. The probability P(n; *; [Dk]) for various *, n and Dk as discussed
above. We often omit some of the arguments for simplicity.

2. For case A, the conditional probability Pc(n+1 | n; *; [Dk])=
P(n+1)�P(n) for the particle being in *Dn+1 given that it was in all the
previous *Dk for k=1 } } } n. Again, we often omit arguments for simplicity.

Equation (1) actually makes two testable assertions: Does the limit on
the left hand side (LHS) exist, and if so, is it equal to the right hand side
(RHS)? The above measured quantities give information about the LHS
and we are first interested in the large * limit of these quantities; for the
RHS we obtain the diffusion tensor from Eq. (3) (see Table II) and per-
form the integration numerically. This has only been carried out up to
n=2 (which is a four-fold integration). However, for larger n and case A,
the right hand side is (to a very good approximation) multiplied by a con-
stant factor for each additional repetition,6 so the prediction is that the
conditional probabilities become independent of n for large * and n. In fact
our result show this behavior already at the smallest values of n.
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6 The approximation can perhaps be understood as follows. If we perform all but the last xn

integration, we are left with an integral over a function, say fn(xn). At the n+1 stage, we
have fn+1 as a linear operator L (integral over a Gaussian kernel) acting on fn . Assuming
L is well behaved, the fn approach a limiting form f� *n

0 as n � � where 0<*0<1 is the lead-
ing eigenvalue of L and f� is the leading eigenfunction. Performing the last integration, we
find that successive integrals differ by a factor of *0 , leading to a vanishing probability for
n � �.
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Fig. 2. Probabilities P(*) as a function of * for case A, with different curves giving
n=1 } } } 7. Note that the probability becomes independent of * indicating the existence of the
limit on the LHS of Eq. (1). The equal spacing between subsequent values of n indicates a
fixed ratio of successive recurrences since the scale is logarithmic. This is consistent with the
uncorrelated diffusion as given by the RHS of Eq. (1). The statistical error is greatest when
the probability is low, and when the correlations in the data are greatest, that is, for the peri-
odic square model.

The results are shown in Figs. 2�4 and Table III. For all n and [Dk]
the P(*) approach a constant (apart from statistical error) at large *,
indicating convergence of the limit in Eq. (1), see Fig. 2 for case A and
Fig. 4 for case B. For case A, all the conditional probabilities approach the
same constant indicating conditional independence of the multi-time
probabilities as predicted by diffusion, see Fig. 3; an equivalent statement
is that on a logarithmic scale, all the curves in Fig. 2 become equidistant
at large *. We have verified numerically that in both cases A and B the
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Fig. 3. Conditional probabilities Pc(n+1 | n; *) as a function of * for case A, and n=1 } } } 4,
derived from Fig. 2. The equal spacing in Fig. 2 now causes the graphs corresponding to
different values of n to coincide. Again, statistical error is greatest with low probability
(larger n) and with greater correlations in the data (the periodic square model).

values of the constants as * � � are consistent with their values as given
on the RHS of Eq. (1), thus confirming the diffusive nature of all these
models.

4. DISCUSSION

1. The above mentioned results suggest that there is no difference in
the diffusive behavior of chaotic (Lorentz) and non-chaotic (Ehrenfest)
models. Both exhibit Gaussian diffusion and their only difference is the
value of the diffusion coefficients.
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Fig. 4. Probabilities P(*) as a function of * for case B. The different symbols correspond to
different D (i)

k (i=1 } } } 7) as given in Table I. The dashed or dotted horizontal lines give the
predicted values from the RHS of Eq. (1), and are not visible when they run through the data.
The order of the curves differ due to the anisotropy of the diffusion in the periodic models.

2. The case A, in particular the larger probabilities for recurrence at
small * as seen in Fig. 2, especially suggests the presence of ``small'' periodic
orbits, which favor return to previously visited regions for the nonchaotic
wind-tree models since they exhibit only algebraic 1�t decay (see ref. 3). For
the chaotic Lorentz models, periodic orbits disappear exponentially fast in
t and therefore more returns are less likely. Nevertheless this difference in
periodic orbit stability, which indicates a more subtle chaotic difference
than the corresponding KS entropies in these models, do not appear to
lead to a qualitatively different, non-Gaussian, diffusion process.
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Table III. Conditional Probabilities Pc(n+1 | n). The Second, ``Theoretical''
Column Gives the Values Calculated from Numerical Integration of the RHS of
Eq. (1). The Other Columns, Derived from Fig. 3 by Averaging Over * from 50

to 100, Agree with the Values from Column 2, and Do Not Depend on n,
Consistent with Conditional Independence in the Underlying Probability
Distribution. The Differences in the Periodic Square Model Are Almost

Certainly Due to Statistical Errors, as in Figs. 2, 3

Model Pc(2 | 1)th Pc(2 | 1) Pc(3 | 2) Pc(4 | 3) Pc(5 | 4)

Random squares 0.1443 0.1457 0.1448 0.1437 0.1426
Periodic squares 0.1288 0.1392 0.1295 0.1113 0.1147
Random circles 0.0827 0.0831 0.0835 0.0810 0.0825
Periodic circles 0.0781 0.0785 0.0788 0.0780 0.0776

3. The influence of small almost periodic orbits is clearly local and
incoherent from region to region. It is therefore constantly wiped out and
does not influence the global diffusion process at all, except for example in
the values of the Dij , which should decrease by a strong influence of almost
periodic orbits.

4. Our results here appear to differ from the behavior observed in
open (that is, finite with absorbing boundaries) Lorentz and Ehrenfest
models in ref. 3. There, we studied the number of particles with different
initial conditions remaining in the system as a function of time. Only the
Lorentz model exhibited the exponential decay of particles characteristic of
the diffusion equation; the Ehrenfest model corresponding to our squares
exhibited 1�t decay due to trapping of particles around periodic orbits. This
is not in contradiction to our results here (for which the nonchaotic model
also exhibits diffusion) since the limits are different: With absorbing boun-
daries, the limit t � � occurs with the linear dimension of the observed
region (the whole system) L fixed; in this note the linear dimension of the
observed regions *D is scaled as t1�2, which is more natural for diffusion.
Thus, the identification of a model with diffusion depends not only on the
microscopic dynamics, but also on the manner in which the limit is taken.
It would be interesting to investigate these relationships further.

5. To conclude, our results indicate that at least for the models we
consider, subtle correlations, whether associated with almost periodic
orbits in small clusters of scatterers or otherwise, are insufficient to modify
the long time Gaussian form of the diffusion process when the natural
macroscopic limit is taken (such that lengths are scaled with the squareroot
of times). In so far as these correlations are determined by the microscopic
chaotic nature of the system, the chaoticity does not seem to show up in
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the macroscopic diffusive behavior. This behavior is consistent with the
results of the Brownian motion experiment discussed in ref. 1, and the
argument(2) that the long measuring times of 1�60s means that the results
could come equally from chaotic or nonchaotic microscopic dynamics, and
that any experimental determination of microscopic chaoticity would
necessarily involve measurements at microscopic time scales.
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